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The limited spatial resolution in proton computed tomography �pCT� in comparison to x-ray CT is
related to multiple Coulomb scattering �MCS� within the imaged object. The current generation
pCT design utilizes silicon detectors that measure the position and direction of individual protons
prior to and post-traversing the patient to maximize the knowledge of the path of the proton within
the imaged object. For efficient reconstruction with the proposed pCT system, one needs to develop
compact and flexible mathematical formalisms that model the effects of MCS as the proton
traverses the imaged object. In this article, a compact, matrix-based most likely path �MLP� for-
malism is presented employing Bayesian statistics and a Gaussian approximation of MCS. Using
GEANT4 simulations in a homogeneous 20 cm water cube, the MLP expression was found to be able
to predict the Monte Carlo tracks of 200 MeV protons to within 0.6 mm on average when employ-
ing 3� cuts on the relative exit angle and exit energy. These cuts were found to eliminate the
majority of events not conforming to the Gaussian model of MCS used in the MLP
derivation. © 2008 American Association of Physicists in Medicine. �DOI: 10.1118/1.2986139�
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I. INTRODUCTION

Proton radiography and proton computed tomography �pCT�
were first proposed as a possibility by Cormack1 in 1963 and
later explored experimentally.2–7 Through these studies a
number of advantages of pCT over conventional x-ray CT
�xCT� were identified. However, one limiting factor and a
major reason for the abandonment of the early experimental
projects was the obvious lack of spatial resolution achievable
with pCT in comparison to xCT. This substandard spatial
resolution is related to multiple Coulomb scattering �MCS�
within the imaged object. In MCS the protons interact with
the Coulomb fields of the nuclei in the absorbing material,
resulting in many small-angle deflections in the proton tra-
jectory.

With the expansion of proton radiation therapy since the
1990’s, renewed interest has been placed in the development
of a clinical pCT system.7–9 The current generation pCT de-
sign utilizes silicon detectors that measure the position and
direction of individual protons prior to and post-traversing
the patient to maximize the knowledge of the path of the
proton within the imaged object.8 With such knowledge,
electron density maps can be reconstructed with submillime-
ter spatial resolution using iterative reconstruction
algorithms.9 For efficient pCT reconstruction one needs to

develop compact and flexible mathematical formalisms that
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model the effects of MCS as the proton traverses the imaged
object.

There have been two primary studies in which mathemati-
cal formulas were published that attempted to model the ef-
fects of MCS on proton trajectory while traversing a uniform
material. The first, by Schneider and Pedroni,10 was formu-
lated for analysis of spatial resolution in proton radiography.
This formalism, based on the generalized Fermi-Eyges
theory of MCS,11 sought to calculate the most probable tra-
jectory of protons and its standard deviation at any interme-
diate depth in an absorber having measured a certain entry
and exit location, and was expanded upon to include sce-
narios wherein the exit direction of the proton was also
known. Williams,12 assuming knowledge of entry and exit
position and exit direction, later went on to use �2 statistics
to derive a most likely path �MLP� formalism including error
envelopes for pCT application. The advantage in terms of
spatial resolution achievable in pCT reconstructed images
when employing Williams’s MLP formalism in combination
with an algebraic reconstruction algorithm was demonstrated
by Li et al.9 A drawback of Williams’s formalism, however,
is that it cannot directly be applied to scenarios in which only
incomplete proton track information, for example, only entry
and exit location but not direction, is available.

The expressions published in the previous articles re-

quired evaluation of complicated ratios of polynomials. Fur-
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ther, the expressions were derived for parallel beams and
needed to be modified to adapt to incident proton beams with
divergent beam direction such as a fan or cone beam. The
more compact, matrix-based most likely path formalism pre-
sented in this paper uses a scattering model similar to that of
Williams but employs Bayesian statistics to determine the
lateral displacement and direction of maximum likelihood at
any intermediate depth within a uniform absorbing material.
Using GEANT4 simulations in a homogeneous water phan-
tom, we demonstrate the performance of the formalism by
comparing estimated and simulated proton paths. Further, we
demonstrate that the accuracy of the path estimation based
on a Gaussian scattering model can be improved by using
appropriate angular and energy cuts on the proton histories.

II. MAXIMUM LIKELIHOOD PROTON PATH
FORMALISM

The passage of a proton through an object can be de-
scribed in a semiclassical manner assuming continuous en-
ergy loss and scattering, although some of the underlying
formulas require quantum mechanics for their derivation.13

Consider a lab reference system defined by the external de-
tectors of a pCT scanner. The u-axis defines the general di-
rection of the proton beam orthogonal to the detector planes
and the t and v axes are parallel to the detector planes. At any
given depth u1 measured along the u-axis, the proton can be
characterized by its lateral �t1� and vertical �v1� coordinates
and a lateral and vertical direction characterized by angles �1

and �1 relative to the u-axis. Since scattering in the lateral
and vertical direction can be considered as two independent
statistical processes, one can confine the derivation of the
MLP to one plane, e.g., the u-t plane �Fig. 1�. In that case,
the location and direction of a proton at any depth u1 is given
by the 2D parameter vector,

y1 = � t1

�1
� . �1�

Finding the MLP is essentially a maximum likelihood
problem, which can be solved within the Bayesian frame-
work. The MLP solution estimates the most likely param-
eters of a model describing the path �location and direction�
of a proton through an object given what is known about the
proton from exterior measurements. This can be further de-
veloped by including what is known about the object to be
reconstructed starting from the prior assumption of an object

FIG. 1. Scattering geometry in the u-t plane.
of water density uniformly filling the reconstruction space
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and updating the knowledge about the object during iterative
steps of the reconstruction. The latter, however, will not be
the subject of the current article, as we will maintain the
initial assumption of a homogeneous object of water density.

In Bayesian terminology, we have a prior likelihood of
finding the proton with a parameter vector y1 at depth u1

given some knowledge of the proton before it enters the re-
construction volume, L�y1 �entry data�, a likelihood of find-
ing the proton with available exit information given y1 at
depth u1, L�exit data �y1�, and a posterior likelihood that the
proton had parameters y1 at depth u1 given the observed exit
information, L�y1 �exit data�. According to Bayes’ theorem,14

the prior and posterior likelihood are then related as in Eq.
�2�,

L�y1�exit data� = L�exit data�y1�L�y1�entry data� . �2�

The most likely location and direction �in short, the MLP�
can then be derived by finding the vector y1 that maximizes
the posterior likelihood, thus,

L�y1 = yMLP�exit data� = max, �3�

or

�L�y1�exit data� = � �t1

��1
�L�y1�exit data��y1=yMLP

= �0

0
� .

�4�

Scattering of a proton in a medium is well described by
Moliere’s theory;15 however, for the purpose of the MLP
derivation, it is sufficient to use the Gaussian approximation
of the generalized Fermi-Eyges theory of MCS,11 which is an
extension of Fermi’s original MCS theory.13 This may be
justified by the fact that large-angle scattering events arising
both from elastic and nonelastic nuclear interactions, which
lead to a non-Gaussian tail of the probability density func-
tions, can be excluded by appropriate data cuts. This process
eliminates events with a large relative exit angle, displace-
ments, and/or energy losses. The validity of this assumption
was investigated as part of the ensuing simulation work �see
Sec. IV�.

First, we start with the general form of the likelihood
functions involved in proton MCS, assuming that a proton
enters the reconstruction volume at u0 with zero lateral dis-
placement �t0=0� and parallel to the u-axis ��0=0�. In the
generalized Fermi-Eyges theory of MCS,11 the prior likeli-
hood density function of the parameter vector y1 given the
entry information can be described by a bivariate Gaussian,
which can be written in compact matrix notation as

L�y1�y0 = �0

0
�� = exp�−

1

2
y1

T�1
−1y1� . �5�

Here, �1
−1 is the inverse of the symmetric positive definite

scattering matrix whose elements correspond to the variances
and covariances of t1 and �1 acquired between u0 and u1,

�1 = � �t1
2 �t1�1

2

�t �
2 ��

2 � . �6�

1 1 1
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The elements of the scattering matrix can be calculated
from Eqs. �7�–�9� �presented below� and depend on the depth
of the proton, taking energy loss into account. These equa-
tions, without the logarithmic term, were introduced by
Eyges,11 who solved Fermi’s original MCS theory13 for par-
ticles undergoing a significant energy loss. Later, Highland16

went on to add a logarithmic thickness-dependent correction
factor, although their model neglected energy loss and there-
fore did not contain integrals. The constants used in Eqs.
�7�–�9� are based on the refinement of Highland’s model by
Lynch and Dahl.17 We followed the suggestion of Gottschalk
et al.18 �see their Eq. 29� to extract the logarithmic correction
factor out of the integrand. This model was recently shown
by Safai et al.19 to accurately describe the lateral profile of
collimated and noncollimated proton beams in water when
compared to measurements.

In Eqs. �7�–�9�, the terms �2�u�, p2�u� are the squared
velocity relative to the speed of light c and the momentum of
the proton at depth u, respectively, and the empirical con-
stants E0=13.6 MeV /c and 0.038 were introduced by Lynch
and Dahl. The quantity X0 is the radiation length, which is a
constant for a given material. Here, we will assume that the
scattering object consists of water, for which X0=36.1 cm.

�t1
2 �u0, u1� = E0

2�1 + 0.038 ln
u1 − u0

X0
�2

��
u0

u1 �u1 − u�2

�2�u�p2�u�
du

X0
, �7�

��1

2 �u0, u1� = E0
2�1 + 0.038 ln

u1 − u0

X0
�2

��
u0

u1 1

�2�u�p2�u�
du

X0
, �8�

�t1�1

2 �u0, u1� = E0
2�1 + 0.038 ln

u1 − u0

X0
�2

��
u0

u1 u1 − u

�2�u�p2�u�
du

X0
, �9�

Let us consider the ideal case that both complete entry
information, i.e., lateral coordinate t0 and angle �0 at entry
depth u0, and complete exit information, i.e., lateral coordi-
nate t2 and angle �2 at the exit depth u2 have been measured.
To simplify the MLP derivation, we will make certain small-
angle approximations. In particular, by assuming that the en-
try angle �0 is relatively small, i.e., a few degrees, which is
realistic for typical pCT entry geometries, we may make use
of the small angle approximations; sin �0	�0 and cos �0

	1.
In order to use the standard form of the Gaussian likeli-

hood given by Eq. �5�, we change the local coordinate sys-
tem of the incoming proton according to the location and
orientation of the proton path at the entry depth u0. In doing
so we arrive at an expression for the rotated 2D parameter

vector y1� �Eq. �10��,
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y1� = y1 − R0y0, �10�

where

R0 = �1 u1 − u0

0 1
� . �11�

With this notation, we can define the prior likelihood of y1

given y0 as

L�y1�y0� = exp�−
1

2
�y1

T − y0
TR0

T��1
−1�y1 − R0y0�� . �12�

Note that an analogous expression, although not in compact
matrix form, was derived by Jette et al.20 and applied to
electrons undergoing MCS.

It is straightforward to apply the same principle to obtain
the likelihood of the exit parameter vector y2 at depth u2

given y1 at depth u1. Now, justified by the small-angle ap-
proximation of MCS, which limits the angle �1 to a few
degrees, we can define the prior likelihood of y2 given y1 as

L�y2�y1� = exp�−
1

2
�y2

T − y1
TR1

T��2
−1�y2 − R1y1�� , �13�

where

R1 = �1 u2 − u1

0 1
� , �14�

and �2
−1 is the inverse of the positive definite scattering ma-

trix whose elements correspond to the variances and covari-
ances of t2 and �2 acquired between u1 and u2. In this case,
the scattering elements may be calculated from Eqs.
�16�–�18�,

�2 = � �t2
2 �t2�2

2

�t2�2

2 ��2

2 � , �15�

�t2
2 �u1,u2� = E0

2�1 + 0.038 ln
u2 − u1

X0
�2�

u1

u2 �u2 − u�2

�2�u�p2�u�
du

X0
,

�16�

��2

2 �u1,u2� = E0
2�1 + 0.038 ln

u2 − u1

X0
�2�

u1

u2 1

�2�u�p2�u�
du

X0
,

�17�

�t2�2

2 �u1,u2� = E0
2�1 + 0.038 ln

u2 − u1

X0
�2

��
u1

u2 u2 − u

�2�u�p2�u�
du

X0
. �18�

We can now define the posterior likelihood of y1 by combin-
ing Eqs. �12� and �13� according to Eq. �2�,

L�y1�y2� = exp�−
1

2
��y1

T − y0
TR0

T��1
−1�y1 − R0y0�

+ �yT − yTRT��−1�y − R y �� �19�
2 1 1 2 2 1 1 �



4852 Schulte et al.: Maximum likelihood path formalism for proton CT 4852

exp�− �2� . �20�

To derive the MLP, we find the y1 that minimizes �2. First
we write

�2 =
1

2
��y1

T − y0
TR0

T��1
−1�y1 − R0y0�

+ �y2
T − y1

TR1
T��2

−1�y2 − R1y1�� �21�

=
1

2
�y1

T�1
−1y1 − 2y0

TR0
T�1

−1y1 + y0
TR0

T�1
−1R0y0 + y2

T�2
−1y2

− 2y1
TR1

T�2
−1y2 + y1

TR1
T�2

−1R1y1� . �22�

Carrying out the differentiation of �2 with respect to t1 and
�1 results in

��2 = ��1
−1 + R1

T�2
−1R1�y1 − �1

−1R0y0 − R1
T�2

−1y2. �23�

Setting this to zero and solving for y1, we obtain the follow-
ing compact maximum likelihood proton path formula:

yMLP = ��1
−1 + R1

T�2
−1R1�−1��1

−1R0y0 + R1
T�2

−1y2� . �24�

A major advantage of the use of the Gaussian approxima-
tion of MCS is that the distribution of possible trajectories at
a given depth may also be calculated. The inclusion of this
error envelope may be an important tool for image recon-
struction in pCT. Possible uses that have been suggested in-
clude an algorithm that integrates the trajectory likelihood
over the volume of each voxel near the proton trajectory or
weighting the contribution of a proton trajectory to a voxel
solution by some function of the distance in relative units of
standard deviations the center of the voxel lies from the
trajectory.12

The combined t1 and �1 2D Gaussian trajectory distribu-
tion can be described by the error matrix �ij, calculated from
the inverse of the curvature matrix 	ij,

	ij 

1

2

�2�2

�t1��1
, �25�

where

�2�2

�t1��1
= �1

−1 + R1
T�2

−1R1. �26�

The error matrix is then found from the inverse of 	t1�1,

�t1�1
�u1� = 2��1

−1 + R1
T�2

−1R1�−1. �27�

The element in the first row and first column of �t1�1
�u1� will
return the variance in the lateral displacement at a depth u1.
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III. GEANT4 SIMULATIONS

In order to calculate the elements of the scattering matri-
ces �Eqs. �7�–�9� and �16�–�18��, one requires knowledge of
how the proton loses energy with depth in a material. In
particular, we require

1

�2�u�p2�u�
=

�E�u� + Ep�2c2

�E�u� + 2Ep�2E2�u�
. �28�

In Eq. �28�, � is the velocity of the proton relative to the
speed of light, p is the momentum, E�u� is the depth-
dependent kinetic energy, and Ep=938.272 MeV /c2 is the
proton rest energy. For this section, a simple GEANT4 �Ref.
21� simulation was carried out with a 200 MeV monoener-
getic proton pencil beam incident on a 20 cm thick water
absorber. The mean value of 1 /�2p2 of the protons was re-
corded in 5 mm intervals through the absorber. A fifth-degree
polynomial was fit to these data to provide a 1 /�2�u�p2�u�
function as suggested by Williams.12 Approximating
1 /�2�u�p2�u� with a polynomial allows for an explicit evalu-
ation of the integral form of the scattering elements, avoiding
the use of numerical integration methods,

1

�2�u�p2�u�
= a0 + a1u + a2u2 + a3u3 + a4u4 + a5u5. �29�

The coefficients of the fifth-degree polynomial fit to
1 /�2�u�p2�u� derived from the GEANT4 data are listed in
Table I.

In order to study the performance of Eq. �24� as an MLP
formula, the Monte Carlo proton tracks of a GEANT4 simula-
tion were compared to the output of the derived MLP. Simu-
lating clinical pCT conditions, a monoenergetic, uniformly
distributed proton fan beam of 200 MeV was incident on a
20 cm water cube. As mentioned above, since scattering in
the lateral and vertical direction can be considered as two
independent statistical processes, beam divergence was fixed
to the t-u plane �Fig. 2�. Sensitive volumes were installed at
the entry and exit faces of the cube and at 5 mm intervals
throughout the cube to record the projection of the displace-
ment and angle of the 3D Monte Carlo tracks onto the t-u
plane for each proton history. Proton energy was also re-
corded at the exit face.

The simulations were carried out based on the GEANT4

multiple scattering model, low energy hadronic ionizations,
low energy hadronic elastic collisions, and ICRU-based low

TABLE I. Results of the polynomial fit to the average value of 1 /�2�u�p2�u�.
The units are c2 /MeV2 divided by appropriate powers of cm.

Coefficients Values

a0 7.457�10−6

a1 4.548�10−7

a2 −5.777�10−8

a3 1.301�10−8

a4 −9.228�10−10

a5 2.687�10−11
energy inelastic collision models. The first 3000 protons to
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completely traverse the cube were recorded for analysis. As
well as recording proton position, direction, and energy, the
GEANT4 toolkit also allowed for an identification of protons
that underwent a nuclear collision �elastic or inelastic� at any
stage through the object.

Following the simulation, the mean and standard devia-
tion ��� of the relative exit angle �difference between proton
exit and entry angle� and exit energy of the recorded histories
were calculated. This allowed for the implementation of 3�
data cuts where protons having a relative exit angle or exit
energy lying more than 3� from the respective means were
eliminated. The effect of these cuts on MLP performance
was investigated.

IV. RESULTS

Figure 3 demonstrates three examples of proton Monte
Carlo tracks in water obtained from GEANT4, as well as the
MLP �Eq. �24�� with associated error envelopes �Eq. �27��.
Figures 3�a� and 3�b� illustrate how the MLP smoothes out
the many individual small-angle scattering events. Figure
3�c� gives an example of a history that was identified to have
undergone an elastic nuclear collision. The effect of such an
event on path accuracy is evident. Note that the examples in
Fig. 3 were generated with protons inclined to the u-axis.

A plot of the root-mean-square �rms� error in lateral dis-
placement as a function of depth in water for the 3000 proton
histories analyzed can be seen in Fig. 4. The three plots
illustrate the effect of the analyzed nuclear collision events
�
99% of which are elastic collisions� on the overall accu-
racy of the derived formula. Recall that Eq. �24� was formu-
lated assuming a Gaussian distribution of multiple scattering,
and as such will only be accurate for events that undergo
small-angle MCS. So, in order to minimize the effect of elas-
tic nuclear collision and large-angle MCS events in pCT im-
age reconstruction, 3� cuts on the relative exit angle �differ-
ence between proton exit and entry angle� should be
performed. Further, in a clinical pCT system, secondary pro-
tons may be generated within the imaged object through in-
elastic nuclear collisions. In order to eliminate these and the
primary protons taking part in the reaction, 3� cuts on the
exit energy should also be performed to maximize density
resolution.8 The best practically achievable plot, obtained by

FIG. 2. Geometry of the GEANT4 simulation. The incident beam has no width
in the u-v plane and a uniform fan distribution in the u-t plane.
performing these cuts, was found to display a maximum rms
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error of approximately 0.55 mm at the center of the water
object.

The effect of the aforementioned cuts on MLP perfor-
mance is also demonstrated in Table II. Because a Gaussian
approximation of multiple scattering was utilized, it would
be expected that �1% and 5% of events would fall outside
the 3�MLP and 2�MLP error envelopes, respectively, if only
small-angle scattering events were recorded. However, be-
cause nuclear collision events were also included in the
simulation and a non-Gaussian model of MCS is employed
in GEANT4, values of 8.47% and 13.47% were found for
these quantities respectively if no cuts were performed. If 3�

FIG. 3. Examples of off-axis oblique Monte Carlo proton tracks �bold� and
MLP output �solid line� with associated 2 �dash-dash-dash� and 3� �dash-
dot-dash� error envelopes. The top two Monte Carlo tracks underwent MCS
only and lie completely within the error envelopes. The bottom example
shows a proton that underwent an elastic nuclear collision and falls outside
both error envelopes.
cuts on the relative exit angle and exit energy are used, elimi-
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nating the majority of the large-angle scattering events, these
values are reduced to 1.87% and 6.38%, much closer to the
expected �1% and 5%. Table II also demonstrates that the
majority of events lying outside the error envelopes are
eliminated by the relative exit angle cut and not greatly im-
proved by the exit energy cut. As already mentioned, the
energy cuts are necessary, however, for optimal density res-
olution in pCT.

V. DISCUSSION

A new formalism of deriving the MLP of a charged par-
ticle in a uniform material within the Bayesian maximum
likelihood framework has been proposed. The MLP formula
derived in this article was applied to scenarios where the
position and direction of each proton at the entry and exit
planes are known, but a case with more restricted informa-
tion is presented in the Appendix. The simulation toolkit
GEANT4 was used to compare Monte Carlo proton tracks to
the output of the derived MLP expression. It was found that
the new formalism could predict the Monte Carlo paths
based on the entry and exit information to within 0.6 mm on
average when applying 3� cuts on the relative exit angle of
the protons. Such cuts were found to eliminate the majority

FIG. 4. Root-mean-square �rms� error in lateral displacement in the t-u plane
between the path approximation formula and associated Monte Carlo track
as a function of depth in water for 3000 GEANT4 proton histories. Error bars
were not included for the rms multiple scattering and cuts plots, as the errors
were negligible.

TABLE II. Summary of the effect of applying various
through the water cube a track was found to have a
identified as falling outside the error envelope.

Ty

Envelope width

2�MLP

3�

3� rela
3� exit energy an

3�MLP

3�

3� rela
3� exit energy an
Medical Physics, Vol. 35, No. 11, November 2008
of events that did not conform to the Gaussian approximation
of MCS employed in the derivation �i.e., nuclear collisions
or large-angle MCS� and thus improve the path approxima-
tion accuracy. Eliminating these events is advantageous for
pCT image reconstruction purposes where the greatest spa-
tial resolution will be achieved when proton path approxima-
tion is at its most accurate. Additional 3� cuts on exit energy
did only slightly improve the performance of the formalism;
however, these cuts are valuable to properly reconstruct the
relative electron density integrated along the proton path.8

From the plots in Fig. 4 it can be seen that the largest
error in path approximation, on average, occurs downstream
from the center of the object as previously described by
Schneider and Pedroni.10 This suggests that pCT images will
exhibit less spatial resolution in the paracentral region of the
image. Application of the standard deviation of the proton
displacement around the MLP, which can be derived from
the error matrix �Eq. �27��, may prove advantageous in deal-
ing with this. In present reconstruction work,9 the proton
path is assumed to be deterministic by giving it a weight of 1
in voxels that are intersected by the MLP and zero elsewhere.
By using a probability rather than a binomial value �0, 1�, an
improvement in spatial resolution at depth in pCT images
may be achieved.

The Bayesian formulation with compact matrix formula-
tion presented in this work is also applicable to incomplete
track information. In the Appendix, we present an example
where the proton direction at the exit plane is unknown and
the proton direction in the entry plane is approximately in-
ferred from knowledge of the beam divergence. Using the
likelihood formulation of the MLP, it is straightforward to
derive the case-specific MLP. This approach will be adopted
for a small-scale cone beam prototype pCT system currently
being developed at Loma Linda University Medical Center
�LLUMC�, California. The prototype system features only
two 2D sensitive tracking modules, limiting the information
available about proton trajectories.

Throughout this work it has been assumed that that the
reconstruction space between the detection planes is filled by
the object of water density. In clinical pCT situations, how-
ever, there will be an air gap up to a few tens of centimeters

on the MLP performance. Note that if at any stage
ter error than the width of a �MLP envelope, it was

cut

% of tracks lying outside
�MLP envelope after

applying cut

e 13.47
nergy 10.79
xit angle 6.52
relative exit angle 6.38

e 8.47
nergy 5.88
xit angle 1.89
relative exit angle 1.87
cuts
grea

pe of

Non
exit e
tive e
d 3�

Non
exit e
tive e
d 3�
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between patient and position sensitive detectors. An assump-
tion of homogeneous material filling of the reconstruction
space thereby renders the MLP inaccurate to a certain de-
gree. It is possible, in principle, to deal with this issue when
using iterative reconstruction techniques. With such algo-
rithms, the knowledge of the reconstruction space is updated
after each iteration cycle. In our experience, the object
boundary is clearly visible after the first cycle. Considering
this, we suggest that, for the purposes of the MLP calcula-
tions, the entire reconstruction volume is assumed to be ho-
mogeneous water only in the first cycle. A simple border
detection algorithm can then be used to determine scattering
object boundaries. Using this information, the MLP calcula-
tion can be subdivided into the following cycles. The first
and last sections of the proton path �outside the object�
would use the radiation length of air in Eqs. �7�–�9� and
�16�–�18� with negligible energy loss, while the intermediate
section �inside the object� would make use of the values
outlined in the simulation work presented here. Furthermore,
simulations presented here have only considered scattering in
homogeneous water, while in real pCT cases the object to be
imaged will be of an initially unknown inhomogeneous com-
position. This can be dealt with in a manner similar to the air
gap issue described above. Once again, iteratively updated
information about the density distribution of the object after
complete iterations in the reconstruction process can be used
to iteratively update the MLPs in successive iterations. This
implies a large computational effort that needs to be ad-
dressed both on the soft- and hardware level.

VI. CONCLUSION

A new formalism for calculating the proton path of maxi-
mum likelihood for application in pCT image reconstruction
has been proposed. The matrix-based formalism is math-
ematically equivalent to the previously presented MLP for-
malisms by Schneider and Pedroni10 and Williams12 but is
more compact, independent of incident beam geometry, and
can be adapted to different pCT detector configurations. In a
homogeneous 20 cm water cube, the method was found to be
able to predict the Monte Carlo tracks of 200 MeV protons
to within 0.6 mm on average when employing 3� cuts on the
relative exit angle and exit energy. These cuts were found to
eliminate the majority of events not conforming to the
Gaussian model of MCS used in the MLP derivation.
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APPENDIX: EXAMPLE FOR AN MLP BASED ON
ENTRY AND EXIT LOCATION AND CONE
BEAM GEOMETRY

Consider a pCT system where only position is known at
the entry and exit planes of the reconstruction volume. Fur-
ther, because a cone beam is employed, entry direction can
be inferred from the entry location via the relationship be-

tween cone beam focus and entry location. For a cone beam
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of relatively small divergence, we have �0� t0 /d, where d is
the distance of the entry plane from the beam focus. In this
case, the prior likelihood of measuring a proton with param-
eter vector y1 at depth u1 given the entry parameter vector
y0= �t0 , t0 /d�T at the entry plane is defined as for the case of
complete entry information �Eq. �12��.

The likelihood of observing the exit location t2 given the
parameter vector y1 at intermediate depth u1 is derived by
marginalization of the likelihood L�y2 �y1� in Eq. �13�. Inte-
grating over all possible angles �2, we have

L�t2�y1� = �
−�

�

L�y2�y1�d�2

= exp�−
1

2

�t2 − t1 − �1�u2 − u1��2

�t2
2 � , �A1�

where �t2
2 is given by Eq. �16�. Compact matrix notation can

be reintroduced by writing

L�t2�y1� = exp−
1

2

�y2
T − y1

TR1
T���T�y2 − R1y1�

�t2
2 � , �A2�

where the auxiliary vector �= �1,0�T. Combining this with
the prior likelihood, one obtains the posterior likelihood
L�y1 � t2�, where the �2 exponent is given by

�2 =
1

2�y1
T − y0

TR0
T��1

−1�y1 − R0y0�

+
�y2

T − y1
TR1

T���T�y2 − R1y1�
�t2

2 � . �A3�

Differentiating �2 with respect to y1 and collecting terms in
y1, we obtain

��2 = ��1
−1 +

R1
T��TR1

�t2
2 �y1 − �1

−1R0y0 −
R1

T��Ty2

�t2
2 . �A4�

Introducing the notation

y2� 
 R1
T��Ty2 = t2� 1

u2 − u1
� �A5�

and

R1� 
 R1
T��TR1 = � 1 u2 − u1

u2 − u1 �u2 − u1�2 � , �A6�

we have

��2 = ��1
−1 +

R1�

�t2
2 �y1 − �1

−1y0R0 −
y2�

�t2
2 . �A7�

Setting ��2=0 and solving for y1, the following expression
for the MLP with known entry and exit location and cone
beam geometry is obtained:

yMLP = ��1
−1 +

R1�

�t2
2 �−1��1

−1R0y0 +
y2�

�t2
2 � . �A8�
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